
### Ruedas libres externas FXR ...

### **RINGSPANN®**

## para uniones atornilladas en la parte frontal con despegue X y limitación de par





#### Aplicación como



Antirretroceso

en transportadores continuos con accionamiento múltiple, los cuales se encuentran provistos de un antirretroceso propio.

#### **Características**

Las ruedas libres externas FXR ... son ruedas libres sin soporte propio con elementos de bloqueo con despegue X. Se componen de las ruedas libres externas FXM (ver páginas 60 a 65) y un limitador de par adicional.

El despegue X de los elementos de bloqueo garantiza el funcionamiento en vacío, libre de desgaste, al girar el aro interior a velocidad alta.

En instalaciones transportadoras continuas con varias unidades, es importante tener en cuenta el problema de la distribución desigual del par que sufren las unidades y antirretrocesos individuales. Al parar la instalacion, la totalidad del par recuperador actúa, debido a los diferentes juegos y elasticidades en los accionamientos, principalmente sobre un solo antirretroceso.

Si se utilizaran unos antirretrocesos sin limitación de par, los diferentes reductores y sus correspondientes antirretrocesos deberían, por razones de seguridad, diseñarse de acuerdo con el par recuperador total de la instalación.

El problema de la distribución desigual del par recuperador se soluciona mediante los antirretrocesos FXR ... con limitación de par. Al sobrepasar el par predeterminado, el limitador de par integrado en el antirretroceso se desliza hasta que se hayan activado sucesivamente los demás antirretrocesos, logrando así la distribución del par recuperador total a los diferentes antirretrocesos y reductores. Asimismo, se reducen los picos de par dinámicos del proceso de bloqueo, protegiendo los reductores contra picos de par perjudiciales. Los antirretrocesos FXR ... con limitación de par permiten la utilización de unos reductores de dimensiones reducidas.

#### Ventajas

- Protección de los reductores contra la distribución desigual del par en accionamientos múltiples.
- Protección de los reductores contra los picos de par dinámicos durante el proceso de bloqueo.
- Utilización de reductores de dimensiones reducidas sin pérdida de seguridad.
- Protección de los antirretrocesos, ya que los picos de par se suavizan mediante un breve deslizamiento.

## Ruedas libres externas FXR ...

## **RINGSPANN®**

# para uniones atornilladas en la parte frontal con despegue X y limitación de par

#### Rueda libre externa FXRW y FXRV con limitación de par sin liberación controlable

Esta serie de antirretrocesos con limitación de par representa el tipo básico. Su estructura y los tipos disponibles se detallan en la página 70 y 72.

#### Rueda libre externa FXRU y FXRT con limitación de par y liberación controlable

La estructura es igual a la de la serie FXRW o FXRV, disponiendo adicionalmente de un dispositivo de liberación sensible controlable. Su estructura, la descripción de las funciones del dispositivo de liberación y los tipos estándar disponibles se detallan en la página 71 y 73.

Los antirretrocesos con dispositivo de liberación controlable se utilizan cuando es necesario aflojar controladamente el tensado de la cinta o de la instalación, por un bloqueo de la polea de inversión o al requerir el retroceso limitado del transportador.

#### Cálculo del par de determinación

El siguiente cálculo del par de determinación, se aplica a las instalaciones de accionamiento múltiple, donde a cada unidad se le aplica la misma potencia motor. Póngase en contacto con nosotros en caso de motores con diferentes potencias.

Si el par recuperador por unidad  $\rm M_L$  es conocido, entonces la selección del par de determinación  $\rm M_A$  para el antirretroceso correspondiente, debe calcularse de la siguiente manera:

$$M_A = 1.2 \cdot M_1$$
 [Nm]

Cuando sólo se conoce la potencia nominal por unidad  $P_0$  [kW] se aplica:

$$M_A = 1.2 \cdot 9550 \cdot F^2 \cdot P_0 / n_{SP} [Nm]$$

Los elementos de estas ecuaciones significan lo siguiente:

M<sub>A</sub> = par de determinación del antirretroceso correspondiente [Nm]

 $M_I = 9550 \cdot F \cdot P_I / n_{SP} [Nm]$ 

 par recuperador estático de la carga para cada unidad con relación al eje del antiretroceso correspondiente [Nm] P<sub>L</sub> = carrera de la instalación por unidad bajo plena carga [kW]

 altura de transporte [m] multiplicada por la carga transportada por segundo dividido por el número de unidades [kN/s]

P<sub>0</sub> = potencia motor nominal [kW]

n<sub>SP</sub> = revoluciones del eje del antirretroceso [min<sup>-1</sup>]

F = Factor de selección

Una vez calculado M<sub>A</sub>, el tamaño del correspondiente antirretroceso debe seleccionarse según las tablas del catálogo con las siguientes condiciones:

 $M_R \geq M$ 

 M<sub>R</sub> = par de deslizamiento máx. del antirretroceso según las tablas en las páginas 70 a 73 [Nm] Valores orientativos para F:

| Tipo de instalación                              | F    | F <sup>2</sup> |
|--------------------------------------------------|------|----------------|
| Cintas transportadoras, inclinación de hasta 6°  | 0,71 | 0,50           |
| Cintas transportadoras, inclinación de hasta 8°  | 0,78 | 0,61           |
| Cintas transportadoras, inclinación de hasta 10° | 0,83 | 0,69           |
| Cintas transportadoras, inclinación de hasta 12° | 0,86 | 0,74           |
| Cintas transportadoras, inclinación de hasta 15° | 0,89 | 0,79           |
| Bombas rascadoras de tornillo sinfín             | 0,93 | 0,87           |
| Molinos cónicos, tambores de secado              | 0,85 | 0,72           |
| Transportadores de cangilones, elevadores        | 0,92 | 0,85           |
| Trituradoras de martillos                        | 0,93 | 0,87           |

La suma de los pares de deslizamiento de los antirretrocesos debe ser 1,2 veces mayor que el par recuperador estático de la instalación (incluso con sobrecarga). Los pares indicados en las tablas son valores máximos. Pueden ajustarse valores inferiores. En caso de dudas, solicite más información, dando la descripción exacta de la instalación e indicando las condiciones de servicio. Rogamos utilicen el cuestionario en la página 112.

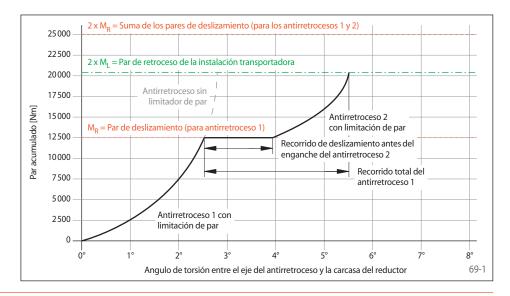
#### **Ejemplo**

Sistema doble accionamiento Potencia del motor por unidad:  $P_0 = 630 \text{ kW}$ Tipo de instalación:

Cinta transportadora con  $8^{\circ}$  de inclinación  $=> F^2 = 0.61$ 

Velocidad por eje del antirretroceso:

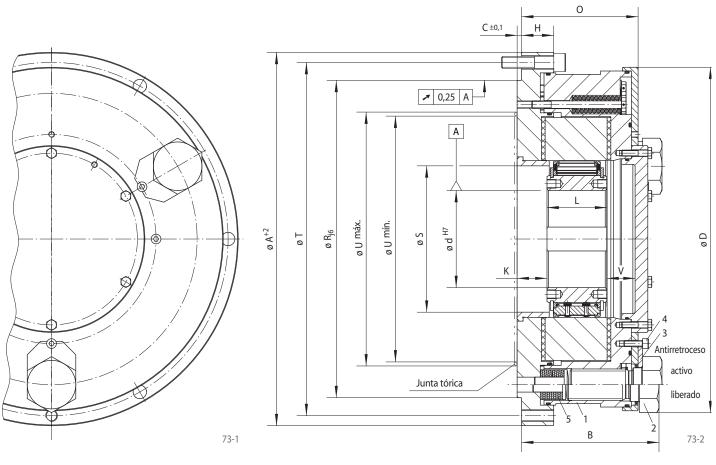
$$n_{SD} = 360 \, \text{min}^{-1}$$


Selección del par de determinación para el antiretroceso correspondiente:

$$M_A = 1,2.9550.0,61.630/360[Nm]$$

La siguiente regla se aplica en todos los casos:

$$M_R \ge M_A$$


=> FXRU o FXRW 140 - 63 MX son los antiretrocesos económicamente adecuados.



## **Ruedas libres externas FXRT**

## **RINGSPANN®**

## para uniones atornilladas en la parte frontal con despegue X, limitación de par y dispositivo de liberación



| retroceso | C      | on despegue X                                  |              | Dimensiones |   |   |   |   |     |   |   |   |   |   |   |   |      |   |     |      |
|-----------|--------|------------------------------------------------|--------------|-------------|---|---|---|---|-----|---|---|---|---|---|---|---|------|---|-----|------|
|           |        | n de vida mediante<br>o al girar el aro interi |              |             |   |   |   |   |     |   |   |   |   |   |   |   |      |   |     |      |
| Antir     |        | 9                                              |              |             |   |   |   |   |     |   |   |   |   |   |   |   |      |   |     |      |
|           |        |                                                |              |             |   |   |   |   |     |   |   |   |   |   |   |   |      |   |     |      |
|           | Par de |                                                | Revoluciones | Diámetro    | Α | В | С | D | G** | Н | K | L | 0 | R | S | Т | U*** | V | Z** | Peso |

|               |      | Par de         |                   | Revoluciones      | Diámetro |      | Α   | В   | C  | D   | G**  | H  | K  | L   | 0   | R   | S   | T   | U*   | ××   | V  | Z** | Peso |  |  |
|---------------|------|----------------|-------------------|-------------------|----------|------|-----|-----|----|-----|------|----|----|-----|-----|-----|-----|-----|------|------|----|-----|------|--|--|
|               |      | desliza-       | Velocidad de      | máx.              | d        |      | d   |     |    |     |      |    |    |     |     |     |     |     |      |      |    |     |      |  |  |
|               |      | miento         | despegue          | Aro interior      |          |      |     |     |    |     |      |    |    |     |     |     |     |     |      |      |    |     |      |  |  |
| Rueda libre   | Tipo | M <sub>R</sub> | aro interior      | gira libre        | Estándar | máx. |     |     |    |     |      |    |    |     |     |     |     |     | mín. | máx. |    |     |      |  |  |
|               |      | Nm             | min <sup>-1</sup> | min <sup>-1</sup> | mm       | mm   | mm  | mm  | mm | mm  |      | mm | mm | mm  | mm  | mm  | mm  | mm  | mm   | mm   | mm |     | kg   |  |  |
| FXRT 85 - 40  | MX   | 1 400          | 430               | 6000              | 60       | 65   | 330 | 148 | 6  | 295 | M 12 | 37 | 29 | 60  | 127 | 280 | 110 | 308 | 165  | 215  | 43 | 6   | 60   |  |  |
| FXRT 100 - 50 | MX   | 2 300          | 400               | 4500              | 70       | 80*  | 350 | 159 | 6  | 311 | M 12 | 39 | 31 | 70  | 134 | 300 | 125 | 328 | 180  | 240  | 38 | 6   | 66   |  |  |
| FXRT 120 - 50 | MX   | 3 400          | 320               | 4000              | 80       | 95   | 400 | 159 | 6  | 360 | M 16 | 36 | 31 | 70  | 134 | 340 | 145 | 373 | 200  | 260  | 38 | 6   | 87   |  |  |
| FXRT 140 - 50 | MX   | 4 500          | 320               | 3000              | 90       | 110  | 430 | 163 | 6  | 386 | M 16 | 36 | 31 | 70  | 134 | 375 | 165 | 403 | 220  | 280  | 50 | 6   | 104  |  |  |
| FXRT 170 - 63 | MX   | 9 000          | 250               | 2700              | 100      | 130  | 500 | 188 | 6  | 460 | M 16 | 43 | 40 | 80  | 156 | 425 | 196 | 473 | 250  | 340  | 38 | 6   | 166  |  |  |
| FXRT 200 - 63 | MX   | 12 500         | 240               | 2100              | 110      | 155  | 555 | 188 | 6  | 516 | M 16 | 49 | 40 | 80  | 156 | 495 | 226 | 528 | 275  | 390  | 38 | 6   | 209  |  |  |
| FXRT 240 - 63 | LX   | 21 200         | 220               | 3000              |          | 185  | 710 | 210 | 8  | 630 | M 20 | 50 | 50 | 90  | 170 | 630 | 290 | 670 | 355  | 455  | 45 | 12  | 355  |  |  |
| FXRT 260 - 63 | LX   | 30 000         | 210               | 2500              |          | 205  | 750 | 223 | 8  | 670 | M 20 | 50 | 50 | 105 | 183 | 670 | 310 | 710 | 375  | 500  | 40 | 12  | 418  |  |  |
| FXRT 290 - 70 | LX   | 42 500         | 200               | 2500              |          | 230  | 850 | 243 | 8  | 755 | M 24 | 52 | 50 | 105 | 190 | 730 | 335 | 800 | 405  | 560  | 48 | 12  | 574  |  |  |
| FXRT 310 - 96 | LX   | 53 000         | 195               | 2100              |          | 240  | 900 | 293 | 10 | 800 | M 24 | 63 | 63 | 120 | 240 | 775 | 355 | 850 | 435  | 600  | 69 | 12  | 805  |  |  |

Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10. \* Ranura de chaveta según DIN 6885, hoja 3 • Tolerancia del ancho de la ranura JS10.

#### **Pares**

Las ruedas libres externas FXRT se suministran con el limitador de par preajustado al par de deslizamiento  $M_R$ . El momento recuperador estático  $M_L$  de la instalación (incluso con sobrecarga) no debe alcanzar en ningún caso la suma del par de deslizamiento  $M_R$  de los antirretrocesos previstos. Los pares  $M_R$  indicados en la tabla son valores máximos, pudiendo ajustarse valores inferiores.

#### Instrucciones de montaje

Las ruedas libres externas FXRT no disponen de soporte propio, por lo que hay que garantizar que la oscilación circular entre el diámetro R de centrado y el diámetro d del eje no sea superior a 0,25 mm. La dimensión C se aplica a la rueda libre externa. La profundidad de centrado en la pieza de conexión a montar por parte del cliente debe ser como mínimo C +0,2 mm. La tolerancia del diámetro de centrado R en la pieza complementaria debe ser ISO H7.

La tolerancia del eje debe ser ISO h6 o j6.

## Funcionamiento del dispositivo de liberación

La liberación sensible controlada se compone principalmente de tres tornillos especiales (2) fijados en el soporte del resorte (1) y las pestañas de seguridad (3). Para liberar el antirretroceso, primeramente se deben aflojar ligeramente los tornillos especiales (2). Después, deben ser extraídos los tornillos allen (4) con sus pestañas de seguridad (3). Los tornillos especiales (2) pueden ser apretados contra las arandelas Belleville (5) y así podemos iniciar la liberación sensible controlada.

<sup>\*\*</sup> Z = número de agujeros de fijación para tornillos G (DIN EN ISO 4762) en el círculo primitivo T. \*\*\* Área de hermetización de la junta tórica Solicite información acerca de otros tamaños de ruedas libres. • Véase la página 69 el cálculo del par de determinación. Solicite información acerca de otros tamaños de ruedas libres.