
Acoplamientos de compensación L ...

Características

- Diseño compacto
- Aislamiento eléctrico
- Sin acción stick-slip
- Gran desalineación del eje radial permisible
- Para desalineaciones angulares hasta 3°
- · Rigided torsional
- Fuerzas radiales mínimas sobre piezas de la máquina contiguas

Configuración

Los acoplamientos de compensación RINGSPANN están basados en el probado principio Oldham. Se componen de un disco central de resina altamente resistente al desgaste y dos mitades de acoplamiento en los extremos, de acero o fundición dúctil. Existen diferentes posibilidades de conexión mediante la combinación de diferentes mitades de acoplamiento (ver Figura 8-2). La construcción robusta que consta sólo de tres elementos básicos, asegura una alta fiabilidad y facilidad de instalación.

Las almenas interiores de los cubos de los extremos, se insertan en las ranuras del disco central, con un desplazamiento de 90° entre ellas, compensando así una gran desalineación paralela si fuera necesario. Adicionalmente, las almenas de apoyo que se encuentran desplazados 90° con respecto a las almenas de accionamiento, pueden compensar desalineaciones angulares hasta 3°.

En el movimiento de rotación, siempre se transmite el ángulo solicitado. Las grandes superficies de transmisión, no están sujetas a deformación elástica o juego y por lo tanto no están sujetas a fatiga.

Las almenas y las ranuras deben lubricarse de acuerdo con el manual de instrucciones, con pasta de grafito o disulfuro de molibdeno. Esta medida no es necesaria en los acoplamientos que trabajen en aceite.

Se debe asegurar que los acoplamientos no se vean afectados por fuerzas axiales, por ejemplo, por la expansión de los ejes debido al calor. Si es necesario, el acoplamiento tiene que ser montado con juego axial entre las almenas y sus ranuras en el disco central.

8

Acoplamientos de compensación L ...

Selección del tamaño del acoplamiento de compensación

La selección del tamaño del acoplamiento de compensación está basada en el par máximo de carga, según la fórmula:

 $M_1 = 9550 \cdot P/n [Nm]$

En esta fórmula:

M_L = Par de carga de la máquina accionada [Nm]

P = Potencia necesaria para el accionamiento de la máquina, que en la mayoría de los casos, es inferior a la potencia nominal del motor [kW]

n = Velocidad del acoplamiento [min⁻¹]

El par $\rm M_L$ requerido, calculado a través de esta fórmula, es una aproximación. En realidad, el par M transmitido por el acoplamiento es irregular debido a la irregularidad del accionamiento y la máquina accionada. El par pico máximo del accionamiento $\rm M_{A\prime}$ debe ser menor que el par transmisible M del acoplamiento seleccionado, según la tabla.

$$M_A < M$$

Si se desconocen las irregularidades en el par transmisible y por tanto el par pico máximo M_{A^\prime} entonces se debe aplicar un factor de seguridad f^{\cdot}

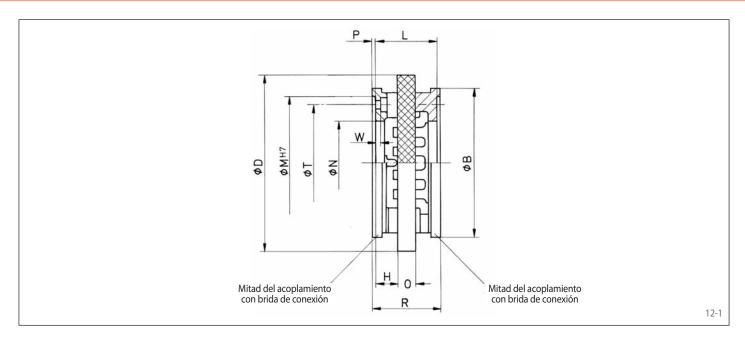
 $M_A = 9550 \cdot P/n \cdot f [Nm]$

El factor de seguridad f depende del tipo de accionamiento y del tipo de máquina accionada, según la siguiente tabla.

En esta fórmula:

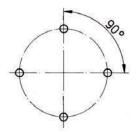
 M_A = Par de selección [Nm]

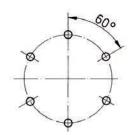
f = Factor de seguridad


Factor de seguridad f

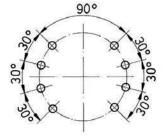
Tipo de máquina accionada	Accionada por										
	Transmisiones por correa, motores eléctricos	Motores de combustión 4 y 6 cilindros	Motores de combustión 2 y 3 cilindros, monocilindros, máquinas de vapor	Motores de combustión monocilindricos							
Transmisiones por correa, pequeños generadores, pequeños ventiladores, sopladores rotativos	1,5	1,7	1,9	2,2							
Elevadores pequeños, ventiladores más grandes, máquinas ligeras para metal, madera y textil, pequeñas cintas transportadoras	1,8	2,0	2,2	2,5							
Elevadores para cargas pesadas, cintas transportadoras pesadas, cintas transportadoras suspendidas, mezcladoras, máquinas textiles con altas inercias	2,0	2,2	2,4	2,7							
Prensas, bombas de corte, punzonadoras, bombas de pistón, calandrias, molinos de última generación, molinos de martillo	2,5	2,7	2,9	3,2							
Generadores de soldadura, trituradoras de piedra, unidades de rodillos pesados, compresores de pistón y bombas de pistón sin volante de inercia, trenes de laminación para metales	3,0	3,2	3,4	3,7							

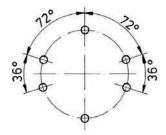
Acoplamientos de compensación LF


Bridas de conexión


Datos técnicos y dimensiones

Tamaño del acopla- miento	Par máximo M	Veloci- dad máxima	Inercia J	Desplaza- miento paralelo máx.	B	D	H	L	M ^{H7}	N	O	P	R	T	W	Z	Patrón de agu- jeros ¹⁾	Peso con agujero en des- baste kg
					111111			111111					111111					_
LF 35	85	4100	0,0009	1,75	90	110	14,5	41	75	45	12	2,5	46	65	3,5	M 6	1	0,7
LF 42	190	3400	0,0026	2,1	110	135	15,5	45	90	52	14	2,5	50	75	4,5	M 6	2	1,4
LF 50	500	2670	0,0053	2,5	135	160	18,0	52	100	65	16	4,5	61	88	4,5	M 8	2	1,9
LF 50.1	500	2 670	0,0051	2,5	135	160	17,5	51	125	76	16	3,0	57	108	5,0	M 8	3	1,7
LF 70	1 000	2140	0,0138	3,5	163	200	21,0	62	135	90	20	4,0	70	115	5,5	M 10	2	3,2
LF 90	2000	1700	0,0453	4,5	202	250	26,5	78	170	104	25	4,5	87	150	7,0	M 10	4	7,0
LF 110	4000	1350	0,1314	5,5	254	315	32,0	96	200	146	32	5,0	106	180	5,0	M 12	3	12,3
LF 140	8 000	1050	0,5203	7,0	330	400	44,0	128	250	157	40	5,0	138	225	8,0	M 16	3	31,2


¹⁾ Distribución de los agujeros de amarre Z (DIN EN ISO 4762) en el diámetro T. El patrón de los agujeros situados en la otra mitad del acoplamiento, se encuentra rotado 90°.


Patrón de los agujeros 1

Patrón de los agujeros 2

Patrón de los agujeros 3

Patrón de los agujeros 4

Ejemplo de pedido

Acoplamiento de compensación LF 110:

• LF 110